Pages

Wednesday, October 30, 2013

Electrical Circuit for Controlling a Lifting Electromagnet for Overhead Cranes with Top Running Trolley Hoist

When the need to conveniently pick up and lift heavy iron or steel objects for transferring from one place to another was seen as a necessity in heavy industrial facilities, the concept of using an electromagnet was implemented due to its ability to be turned ON and OFF which was then incorporated effectively to the hoist function of overhead cranes.

Overhead-travelling-crane magnets are electromagnetic device attached to the crane's hook to magnetically pick up heavy metallic loads for hoisting and transferring.  Cranes that are fitted with a lifting magnet are equipped with an electromagnet control circuit.

Saturday, October 19, 2013

Wiring Connection for a Three Wire Solid State DC Proximity Sensor Without PLC

The previous article illustrated the concept of the wiring connection of a 3 wire DC proximity sensor to a PLC (Programmable Logic Controller). Alternatively, in this article, I will explain another approach on the wiring connection of the same proximity sensor but without using a PLC.

Thursday, October 17, 2013

How to Connect a 3 Wire DC Solid State Proximity Sensor to a PLC

Knowing how to connect a 3 wire DC solid state proximity sensor to a PLC (Programmable Logic Controller) is dependent on the type of proximity sensor and the PLC to be used that is specific to the design of the circuit and the preferred application.

Wednesday, October 9, 2013

Pinch Roller Automatic Grip Control After Shear Cut Using PLC Program

What is a pinch roller? A pinch roller is a rotating machine consisting mainly of two rollers arranged in parallel either horizontally or vertically depending on the process required to pull the material that is rolled in the mill. These two rollers are coupled to a variable speed electric motor which is constantly rotating at a preset speed that is synchronized with the speed of the preceding finishing roller located before the pinch roller.